Compaction of the Escherichia coli nucleoid caused by Cyt1Aa.

نویسندگان

  • Robert Manasherob
  • Arieh Zaritsky
  • Yifah Metzler
  • Eitan Ben-Dov
  • Mark Itsko
  • Itzhak Fishov
چکیده

Compaction of the Escherichia coli nucleoid in the cell's centre was associated with the loss of colony-forming ability; these effects were caused by induction of Cyt1Aa, the cytotoxic 27 kDa protein from Bacillus thuringiensis subsp. israelensis. Cyt1Aa-affected compaction of the nucleoids was delayed but eventually more intense than compaction caused by chloramphenicol. The possibility that small, compact nucleoids in Cyt1Aa-expressing cells resulted in DNA replication run-out and segregation following cell division was ruled out by measuring relative nucleoid length. Treatments with membrane-perforating substances other than Cyt1Aa did not cause such compaction of the nucleoids, but rather the nucleoids overexpanded to occupy nearly all of the cell volume. These findings support the suggestion that, in addition to its perforating ability, Cyt1Aa causes specific disruption of nucleoid associations with the cytoplasmic membrane. In situ immunofluorescence labelling with Alexa did not demonstrate a great amount of Cyt1Aa associated with the membrane. Clear separation between Alexa-labelled Cyt1Aa and 4',6-diamidino-2-phenylindole (DAPI)-stained DNA indicates that the nucleoid does not bind Cyt1Aa. Around 2 h after induction, nucleoids in Cyt1Aa-expressing cells started to decompact and expanded to fill the whole cell volume, most likely due to partial cell lysis without massive peptidoglycan destruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion.

In Escherichia coli the genome must be compacted approximately 1,000-fold to be contained in a cellular structure termed the nucleoid. It is proposed that the structure of the nucleoid is determined by a balance of multiple compaction forces and one major expansion force. The latter is mediated by transertion, a coupling of transcription, translation, and translocation of nascent membrane prote...

متن کامل

Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome

The Escherichia coli chromosome is condensed into an ill-defined structure known as the nucleoid. Nucleoid-associated DNA-binding proteins are involved in maintaining this structure and in mediating chromosome compaction. We have exploited chromatin immunoprecipitation and high-density microarrays to study the binding of three such proteins, FIS, H-NS and IHF, across the E.coli genome in vivo. ...

متن کامل

Dps Is a Stationary Phase-Specific Protein of Escherichia coli Nucleoid

Bacterial genomic DNA is highly organized into one or few compacted bodies known as nucleoid, which is composed of DNA, RNA and several DNA-binding proteins. These DNA-binding proteins require essential alterations in their expression during stationary phase of growth in order to respond to stressful environmental conditions. Dps (DNA-binding protein from starved cells) is one of such DNA-bindi...

متن کامل

Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription

To fit within the confines of the cell, bacterial chromosomes are highly condensed into a structure called the nucleoid. Despite the high degree of compaction in the nucleoid, the genome remains accessible to essential biological processes, such as replication and transcription. Here, we present the first high-resolution chromosome conformation capture-based molecular analysis of the spatial or...

متن کامل

Antibacterial activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis.

Cyt1Aa is a delta-endotoxin protein that is produced by Bacillus thuringiensis subsp. israelensis. It is a membrane pore-forming toxin that is lethal to insect larvae and is broadly cytolytic to vertebrate as well as invertebrate cells. Cyt1Aa is produced as a protoxin of 27 kDa. Proteolytic activation results in a reduction of the molecular mass to approximately 23-24 kDa and a threefold incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 149 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2003